Please... entire DNA genomes are tiny... on the order of 1Gb, with no compression. Taking into account the huge similarities to published genomes, we can compress that by at least 1000X. What they are talking about is the huge amount of data spit out by the sequencing machines in order to determine your genome. Once determined, it's tiny.
That said, what I need is raw machine data. I'm having to do my own little exome research project. My family has a very rare form of X-linked color blindness that is most likely caused by a single gene defect on our X chromosome. It's no big deal, but now I'm losing central vision, with symptoms most similar to late-onset Starardt's Disease. My UNC ophthalmologist beat the experts at John Hopkins and Jacksonville's hospital, and made the correct call, directly refuting the other doctor's diagnosis of Stargartd's. She though I had something else and that my DNA would prove it. She gave me the opportunity to have my exome sequenced, and she was right.
So, I've got something pretty horrible, and my ophthalmologist thinks it's most likely related to my unusual form of color blindness. My daughter carries this gene, as does my cousin and one of her sons. Gene research to the rescue?!? Unfortunately... no. There are simply too few people like us. So... being a slashdot sort of geek who refuses to give up, I'm running my own study. Actually, the UNC researchers wanted to work with me... all I'd have to do is bring my extended family from California to Chapel Hill a couple of times over a couple of years and have them see doctors at UNC. There's simply no way I could make that happen.
Innovative companies to the rescue... This morning, Axeq, a company headquartered in MD, received my families DNA for exome sequencing at their Korean lab. They ran an exome sequencing special in April: $600 per exome, with an order size minimum of six. They have been great to work with, and accepted my order for only four. Bioserve, also in MD, did the DNA extraction from whole blood, and they have been even more helpful. The blood extraction labs were also incredibly helpful, once we found the right places (very emphatically not Labcorp or Quest Diagnostics). The Stanford clinic lab manager was unbelievably helpful, and in LA, the lab director at the San Antonio Hospital Lab went way overboard, So far, I have to give Axeq and Bioserve five stars out of five, and the blood draw labs deserve a six.
Assuming I get what I'm expecting, I'll get a library of matched genes, and also all the raw machine output data, for four relatives. The output data is what I really need, since our particular mutation is not currently in the gene database. Once I get all the data, I'll need to do a bit of coding to see if I can identify the mutation. Unfortunately, there are several ways that this could be impossible. For example, "copy number variations", or CNVs, if they go on for over a few hundred base pairs, are unable to be detected with current technology. Ah... the life of a geek. This is yet another field I have to get familiar with...
Source: http://rss.slashdot.org/~r/Slashdot/slashdotScience/~3/8r9tM_y-bNQ/story01.htm
space weather sunspots pac 12 tournament sun storm tri international criminal court ios 5.1
কোন মন্তব্য নেই:
একটি মন্তব্য পোস্ট করুন